ORN.B. FOUNDATION

MATHEMATICS CURRICULUM

SECONDARY LEVEL

 (YEARS 1-5)
SCOPE

And

SEQUENCE

Of
CONTENT

PREFACE

The start of the 2004-2005 school year marked the launch of a three-year Project aimed at improving the performance of students in the CSEC/CXC examination in Mathematics. The Project was totally funded by the NCB Foundation, part of the Bank's Jamaican Education Initiative.

The six participating schools were:
Gaynstead High School
Jamaica College
Meadowbrook High School
Mona High School
St. George's College and
St. Hugh's High School

Very early in the first year of the Project, the need for a document such as this was identified and a first version was prepared. It was used over the three-year period, and at the end, adjustments were made to accommodate the varied needs and practices across the Schools. [Revised Version, 2007]

Since that time, members of the Project Team have not only kept in touch with some of the Schools listed above, but have interacted with other schools and identified other needs. The revised version of the CXC syllabus which would be examined in 2010 coincided with the Team's decision to offer an up-dated resource for guiding the selection and sequencing of the what of the teaching-learning process over a critical five-year period..... the secondary stage of our education system.

ACKNOWLEDGEMENTS

Members of the Project Team hereby express our thanks to:

- members of the Board of the NCB Foundation for their sustained interest and words of encouragement as we faced the demands and challenges of the Project;
- members of the NCB staff who had direct responsibility for the management of the Project, and particularly to Mrs. Pamela Harrison, who gave invaluable support during the start-up period and to Mrs. Sheree Martin who followed in her footsteps;
- the Principals and staff of the mathematics departments in the original Project Schools and in others which sought our help, for their cooperation and tolerance and
- the students who received us so warmly and taught us so much.

It is our privilege to share this more recently revised version of the Scope and Sequence Chart. It is our hope that more schools will have an opportunity to use it, critique it, and eventually develop the art/skill of developing their own in response to their particular needs.

Radley D. Reid (Team Leader)

E.M. Terry Tomlinson

Lola McKinley

The Scope and Sequence of Content, as the name suggests, describes not only the content to be taught/learnt at each grade level, but more importantly, the developmental order or sequence in which elements of that content might best be introduced to facilitate their understanding and application.

Why a Scope and Sequence Chart at this time?

This is a response to two major needs that have been identified.

Firstly, although most practitioners follow available guidelines about the areas of focus at the particular grade level(s) for which they are responsible, these guidelines seldom indicate the flow from year to year that shows how a topic is introduced and developed over time. The advice offered, especially in the early years, to 'revise the work of the previous year' often results in:

- unnecessary repetition of content at the same level of difficulty;
- gaps in knowledge and related concepts and skills;
- a cumulative lack of readiness for work in the succeeding year(s).

Secondly, and mostly as a result of the first observation, during the last two years of the fiveyear programme, there is an inexplicable choice of topics which varies across groups/classes at the same grade level, even in the same school. Often the pre-requisites for the introduction of some topics are not in place. Factor in the high incidence of teacher turn-over in some contexts and 'confusion' reigns.
This document, by its content and its format guides the way to addressing both these challenges

The Content/Scope of Work

For the most part, institutions which offer a secondary level programme in Mathematics have as their goal the preparation of students for the CSEC/CXC examination. This Chart reflects the required content of the published syllabus for that examination. It takes note of the stated objectives, and provides intermediate steps that may be taken and/or sub-topics to be investigated en route to the achievement of those objectives.
The names of the strands remain essentially the same. There is one exception: for ease of 'handling' the topics; Computation, Number Theory and Sets all appear under the strand, Number.

The Format

The arrangement of the content in tabulated form provides easy access to a range of information at the proverbial glance. In each Strand there is a horizontal sequence that indicates development across grade levels. At the same time, the vertical columns identify the topics to be covered at each grade level.

The order in which the Strands appear is not of major significance. What is important is recognition of the 'seamlessness of Mathematics' and the need for good management of the delivery process to establish the relationships and linkages among concepts and skills within and across Strands.

Reference has already been made to a horizontal sequence. The table indicates the point of introduction of a topic, while arrows indicate the requirement for it to be maintained, reinforced and/or expanded at succeeding levels, year after year beyond that point.
Admittedly, there are possible alternatives to the vertical sequence in which the topics are presented.

In opting for an alternative to this proposed sequence, however, due care must be taken to ensure that topics within a Strand are introduced, not only because of their perceived level of difficulty, but because of their place in the hierarchy of concept development, skill development and the acquisition of knowledge that facilitate genuine understanding and logical reasoning.

Evaluation and Revision/Re-designing

The importance of on-going evaluation of the implemented programme based on this Chart cannot be over-emphasised. It is highly recommended that specific time be set aside for staff members to look back at what was intended (the stated objectives), what was accomplished and by whom (the outcomes) and the procedures which helped or hindered learning.

Do keep assessing and revising this document to the end that it will meet the particular needs of the students in your care. Remember, that population will change as new students join the school community with their own special needs. Remember, yours is the responsibility to detect strengths and weaknesses and to treat with them appropriately. If you can offer the best 'diet', to procure and sustain mathematical health, you'll have passed the test.

Consider this, then, what it must effectively be...work in progress.

It is generally agreed that determination of the what of the mathematics programme, important though it be, is but one element of the process that leads to its successful implementation. Key to effective implementation is effective management, and this, to a large extent depends upon strategic planning.

Spend quality time on planning.

What does such planning entail? What are the must do's at every grade level?

- Set goals / general objectives that reflect a response to your own reality Where are your students now? Where do you want them to go? In what time?
- List and prioritise specific objectives... the targets or stepping stones towards the achievement of each goal./general objective.
It is strongly recommended that you familiarize yourself with the published CXC syllabus where the process is modelled over and over again [See pages 11 to 33]. Note that these are not achievable in a 2 -year period. The imperative is that at every level. over the five years, these general objectives be used to inform the choice of specific objectives which are appropriate for that level. This document will be helpful at this stage.
- Select activities that will contribute to the attainment of the specific objectives. Keep the students in mind... their learning styles, their interests and experiences, their varied abilities. Ensure the development of a variety of cognitive abilities. Here again, the CXC syllabus provides guidance. Note the emphasis on the development of comprehension skills as well as on communication and problem-solving. [See especially: Aims, pages 1-2, Profile Dimensions, page 4, and the Glossary, pages 35-45]
Once students have mastered a skill or gained knowledge, provide opportunity for meaningful practice, not meaningless, boring repetition, but practice that facilitates speedy recall of often-used facts and efficient application of concepts and skills.
- Evaluate! Evaluate! Evaluate! At every stage get a measure of the results of all aspects of your plan. Be able to answer the question: 'How are we doing?' before it is too late. There should be no surprises at the end of the planning cycle

TABLE OF CONTENTS

(Scope and Sequence Chart)

STRANDS

A. NUMBER
1.0 Number Symbols and Systems 1
2.0 Whole Numbers and Integers 1
3.0 Rational and Irrational Numbers
4.0 Sets
B. MEASUREMENT
1.0 Introductory Concepts 11
2.0 Length 12
3.0 Perimeter and Circumference 12
4.0 Area 13
5.0 Volume, Capacity, Mass 14
6.0 Time 15
7.0 Temperature 16
c. GEOMETRY and TRIGONOMETRY
1.0 Shapes in the environment 17
2.0 Basic Geometric Concepts and

Applications
17
3.0 Plane Figures/Shapes: Polygons 19
4.0 Plane Figures, Circles 22
5.0 Solids/3-D Figures 24
6.0 Movement/Transformation 26
7.0 Trigonometry 31
D. ALGEBRA
1.0 Symbolic Representation and Arithmetic-type Operations33
2.0 Equations36

E. RELATIONS, FUNCTIONS \& GRAPHS

Relations and Functions 40
2.0 Graphs of Linear Functions 41
4.0 Graphs of Inequalities 44
F. STATISTICS and PROBABILITY
1.0 Statistics...Introductory ideas 45
2.0 Data Collection, Organisation and Interpretation 45
3.0 Graphical Presentation and Interpretation of Data 47
4.0 Probability 47
G. CONSUMER ARITHMETIC
1.0 The Consumer: Spending for Goods and Services 49
2.0 The Consumer: Working and Earning 51
H. VECTORS and MATRICES 52

1.0	Vectors	52
2.0	Matrices	53

SCOPE

And

SEQUENCE

Of
CONTENT

By

STRANDS
A. NUMBER: Number Theory and Computation

NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010
A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \\ \hline \end{gathered}$	D I S T RIB U TIION O		CONTENT ACROS	S GRADE LE	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 2.0 Whole Numbers and Integers (cont'd)	2.1(b) use of Roman symbols in the environment: where they are usually seen; addition (A) \& subtraction (S) operations as needed for investigations and problem-solving.	$\rightarrow(\mathrm{b})$	$\rightarrow(\mathrm{b})$	\rightarrow (b)	$\rightarrow(\mathrm{b})$
	2.2 Using the base ten PVS for: (a) sequential counting, ordering and comparison of numbers, using the symbols, $<,>, \leq, \geq$	$2.2 \rightarrow$ (a)	$2.2 \rightarrow(a)$	$2.2 \rightarrow$ (a)	$2.2 \rightarrow$ (a)
	(b) the basic operations, $\mathrm{A}, \mathrm{S}, \mathrm{M}, \mathrm{D}$ (i) singly; (ii) combined, noting the conventional order of operations; (c) application of the commutative, associative \& distributive properties of numbers to aid efficient/ speedy 'mental' and written computation	\rightarrow (b) application of the order of operations when (iii) numbers with indices/ exponents are included in the computation;	\rightarrow (b) (i) - (iii)	\rightarrow (b) (i) - (iii)	\rightarrow (b) (i) - (iii)
		$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$
	(d) giving approximate values: (i) to the nearest whole, 10 , 100, 1000; (e)(i) identification, completion and creation of number patterns and sequences	\rightarrow (d) (i) \& approximate values (ii) to 1 or 2 significant figures;	\rightarrow (d) (i),(ii) \&approximate values (iii) to 3 or more sig. figs;	\rightarrow (d) (i) - (iii)	\rightarrow (d) (i) - (iii)
		\rightarrow (e)(ii) patterns \& sequences observed \& created in other mathematical strands [See D. 1.2 (a)]	\rightarrow (e) (i) - (ii)	\rightarrow (e) (i) - (ii)	\rightarrow (e) (i) - (ii)

MAINTOPICSIN STRAND	D I S TRIB U TION O		CONTENT ACROS	S GRADE LEVELS	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 2.0 Whole Numbers and Integers (cont'd)	2.2 (f) problem-solving involving $\left(f_{1}\right)(i)$ establishment and use of a basic 5-step plan; (ii) translation from words to numerals and use of symbols, $=, \neq,>,<, \geq, \leq ;$ (iii) interpretation of information given by tables / charts, bar graphs; (iv) logical reasoning and choice of operation(s); (v) use of simple, clear statement(s) / reason(s) for choice at (iv) above; (vi) application of concepts and procedures, 2.2(a)-(e); (vii) use of appropriate labels and/or units of measure (g)	$\rightarrow\left(f_{1}\right)$ (i)-(vii) plus $\left(f_{2}\right)$ problem-solving that uses additional strategies and skills including: (i) identification of patterns; (ii) classification of information, and making of organised lists; (iii) construction of tables/ charts, bar graphs, pie charts to represent information given in words \&/or words and numbers; (iv) making sketches, drawing diagrams, modelling. (g) formal application of the place- value concept to numbers in base n where $n \leq 10$: (i) the value of a digit in a numeral in any base; (ii) conversion from base 10 to other bases and vice versa; (iii) the operations, $\mathrm{A}, \mathrm{S}, \mathrm{M}$ with numbers in bases besides 10 ; (iv) application of (i) - (iii) to non-metric systems of measurement e.g time	$\rightarrow\left(f_{1}\right) \&\left(f_{2}\right)$ plus $\left(f_{3}\right)$ problem solving that uses a mix of strategies including: (i) eliminating possibilities; (ii) identifying reasonable and/or unreasonable solutions; (iii) working backward; (iv) checking for hidden assumptions; (v) solving a simpler problem	$\rightarrow\left(f_{1}\right)-\left(f_{3}\right)$ plus $\left(f_{4}\right)$ problem-solving: selecting the most appropriate problemsolving strategy / strategies in a given situation $\rightarrow(\mathrm{g})(\mathrm{i})-(\mathrm{iv})$	$\rightarrow\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{4}\right)$ $\rightarrow(\mathrm{g}) \text { (i) }- \text { (iv) }$

A. NUMBER: Number Theory and Computation

A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$	D I S T R I B U T I O N O		CONTENT ACROS	GRADE LEV	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 3.0 Rational and Irrational Numbers	3.1 (a) the concept: common fraction, and working with common fractions: (i) formation and use of equivalent fractions; (ii) comparison and ordering of fractions; (iii) operations (A.S, M, D) with common fractions and mixed numbers, actual \& estimated results; (iv) expression of one quantity as a fraction of another; (v) computation of the required fraction of a given number or quantity; (vi) computation of the whole or the total when given the value of a fraction of it; (b) solution of 'word' problems involving the use of common fractions and/or mixed numbers. (c) \qquad	$3.1 \rightarrow$ (a) (i) - (vi) and (vii) simplifying fractions of the form, ($5^{1 / 4}-2^{1 / 3}$) $\div 2^{1 / 2}$ and/or, $61 / 2-3^{1 / 5} \div 1^{1 / 3}$ [See A. 2.2(b) (ii)] $\rightarrow(\mathrm{b})$ 3.1 (c) extension of the use of common fractions to represent ratios: (i) a ratio: the concept; (ii) symbolic representation of a ratio: a to b or $a: b$, or a / b	$3.1 \rightarrow$ (a) (i) - (vii) and (viii) simplification of fractions of the form, $\frac{12 / 3 \times 7}{31 / 2}$ and/or $\frac{37 / 8-1^{5 / 6}}{2^{3 / 4}-1^{2 / 3}}$ \rightarrow (b) \rightarrow (c)(i)-(vii) and other uses of ratio: (viii) ratios comparing three or more numbers or quantities; (ix) division of a total into three or more unequal parts;	$3.1 \rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{viii})$ $\rightarrow(\mathrm{b})$ $\rightarrow(\mathrm{c})(\mathrm{i})-(\mathrm{xi})$	$3.1 \rightarrow(\mathrm{a}) \text { (i) - (viii) }$ $\rightarrow(\mathrm{b})$ $\rightarrow(\mathrm{c})(\mathrm{i})-(\mathrm{xi})$

A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$	D I S TRIB U TIO N Of		CONTENT ACROSS	GRADE LEVELS	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 3.0 Rational and Irrational Numbers (cont'd)	3.1(c)	3.1(c) (cont'd from page 5) (iii) ratios: in their simplest forms; in the form, $1: n$ (iv) relationship between equal ratios and equivalent fractions; (v) division of a total in a given ratio (unequal sharing); (vi) rate: the concept; unit rate and symbolic representation; use of alternate symbols such as $k m h^{-1}$ and $m s^{-1}$; (vii) formation and solution of problems involving the use of simple ratios and rates; (viii) use of the unitary method for solving problems	\rightarrow (c) (cont'd from page 5) (x) combination of unit rates; (xi) increase or decrease in value by a given ratio	\rightarrow (c) (i) - (xi)	\rightarrow (c) (i) - (xi)
	(d) -----------------------	(d) a proportion: understanding the concept and working with proportions: (i) properties of a proportion; (ii) special use of proportion when one ratio is known and only a part of the second is known; (iii) direct and inverse proportion	\rightarrow (d) (i) - (iii) plus (iv) special application of the proportion concept to scale drawings: (finding actual or representative measures); (v) formation and solution of problems involving ratio and/or rate and/or proportion.	\rightarrow (d) (i) - (v)	\rightarrow (d) (i) - (v)

A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \\ \hline \end{gathered}$	D I S TRIB U T I O N O		CONTENT ACROS	S GRADE LEV	GRADE 11/FORM 5
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	
A. 3.0 Rational and Irrational Numbers \{cont'd\}	3.2 (a) a percent, the concept, symbol and use: (i) forming and comparing percentages; (ii) computation of a percentage of a number or quantity; (iii) expressing one number as a percentage of another; (iv) computation of the total when given a percentage of that total 3.3(a) the decimal fraction: concept, notation and use: (i) relation between location and value of a digit in a number in the base ten $P V S$; special attention to digits which value $10^{\text {th }}$, $100^{\text {th }}$, or $1000^{\text {th }}$ of a unit; (ii) reading, writing, comparing and ordering of numbers which are in decimal form; (iii) the basic operations (A, S, M, D) with decimal fractions \& mixed numbers including decimal currency (b) representing approx. values of decimal fractions and mixed numbers by:	3.2(a) \rightarrow (i) - (iv) Extending the concept: (v) percent: a ratio that compares a number to 100 ; expression of a ratio as a percent $3.3(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{iii})$ (b) representing approx. values of decimal fractions and mixed numbers by:	$3.2(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{v})$ 3.3(a) \rightarrow (i) - (iii) and (iv) writing decimal fractions and mixed numbers in standard form i.e. using scientific notation; (v) the basic operations with numbers that are written in standard form \rightarrow (b) giving approximate values of decimal fractions and mixed numbers correct to:	$\text { 3.2(a) } \rightarrow \text { (i) }-(\mathrm{v})$ $3.3(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{v})$ \rightarrow (b)	$3.2(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{v})$ $3.3(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{v})$ $\rightarrow(\mathrm{b})$

[^0]A. NUMBER: Number Theory and Computation

A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$	D I S T R I B U T I O N O		CONTENT ACROSS	GRADE LEVELS	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 4.0 Sets	4.1(a) The concept, Set; and special language relating to sets: (i) an element or a member of a set; (ii) belonging/not belonging to a set or being a subset of a given set; (iii) the cardinal number of a set, taking note of repeated elements; (iv) the empty or null set; (v) finite and infinite sets; (vi) describing a set by listing its members or by using its defining property. (b) Use of special symbols : (i) curly brackets/braces to enclose members of a set; (ii) a capital letter to name a set; (iii) \in, \notin to show membership/ non-membership in a set ; $\subset, \not \subset$ to show belonging / not-belonging to a given set or being /not being a subset of a given set; (iv) $\boldsymbol{n}(\boldsymbol{A})$ to denote the number of elements in a set and of $\}$ or \varnothing to represent the empty or null set; (v) dots to indicate that some members of a set have been left out.	4.1(a) \rightarrow (i) - (vi) plus additional concepts and related set language: (vii) the universal set; (viii) the complement of a set; (ix) equal and equivalent sets; (b) \rightarrow (i) - (v) and (vi) use of special symbols to indicate the Universal set and the complement of a set; (vii) calculation of the number of subsets in a given set	$4.1(\mathrm{a}) \rightarrow(\mathrm{i})-(\mathrm{ix})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{vii})$	4.1(a) (i) - (ix) $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{vii})$	4.1 (a) (i) - (ix) $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{vii})$

A. NUMBER: Number Theory and Computation

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$		D I S TRIB U T I O N OF		CONTENT ACROSS	S GRADE LEVELS	
		GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
A. 4.0	Sets (cont'd)	4.1(c) Use of special symbols / set notation to show the relationship between two sets: (i) intersection of 2 sets; (ii) union of 2 sets; (iii) disjoint sets	$\rightarrow(\mathrm{c})(\mathrm{i})-\text { (iii) }$	$\rightarrow(\mathrm{c}) \text { (i) - (iii) }$	\rightarrow (c) (i) - (iii)	\rightarrow (c) (i) - (iii)
		(d) Use of sets and their relationships in problemsolving situations [Deliberate linkage between Sets and various types of groupings across Strands]	\rightarrow (d) using the result, $\mathrm{A} \cup \mathrm{B}=$ $\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$ to solve simple numerical problems	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$	\rightarrow (d)
		4.2 (a) The Venn diagram: a graphical way of representing a single set and/or the relationship between two sets. (i) use of loop or other enclosed plane shape, instead of curly brackets and symbols, to show different types of sets and their relationships (ii) interpretation of information given by Venn diagrams which show one or two sets. (iii) the use of Venn diagrams to solve problems	$4.2 \rightarrow$ (a) (i) - (iii) and (iv) the construction and interpretation of Venn diagrams which show the universal set (a rectangular shape) and its subsets (usually loops) (v) interpretation of diagrams as at (iv) to identify a set and its complement	$4.2 \rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{v})$ and (vi) the solution of problems in which one or more of the element(s) in a given relationship must be found	$4.2 \rightarrow$ (a) (i) - (vi) and (vii) the construction and interpretation of Venn diagrams with three sets and/or subsets	4.2 (a) (i) - (vii)

B. MEASUREMENT

B. MEASUREMENT

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN }{ }^{\text {STRAND }} \end{gathered}$	D I S T RIB U T I O N O		CONTENT ACRO	S GRADE LEVE	GRADE 11/FORM 5
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	
B. 2.0 (cont'd)	2.1 (c) approximate measures: (i) to the nearest whole; (ii) to 1 or 2 decimal places [See A. 3.3 (b) (i), (ii)]	\rightarrow (c) approximate measures (iii) to 3 decimal places (iv) to 1,2 or 3 sig. figs [See A. 3.3 (b) (iii), (iv)]	\rightarrow (c) (i) - (iv)	\rightarrow (c) (i) - (iv)	\rightarrow (c) (i) - (iv)
	(d) problem-solving requiring the application of (a) - (c) [practical \& written work]	\rightarrow (d)	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$
B. 3.0 Perimeter and Circumference (distance around the outside of a shape/region)	3.1(a) Perimeter of plane shapes (regular or irregular) bounded by straight lines whose lengths are given: (i) triangles (ii) quadrilaterals identified 'at sight': the square and the rectangle.	$3.1 \rightarrow$ (a)(i) - (ii) plus measurement around plane shapes with curved lines: (iii) circumference of circle; (iv) length of a $1 / 2$ or $1 / 4$ of the whole circum ${ }^{\text {ence }}$; (v) perimeter of composite shapes bounded by a combination of straight line(s) and semi-circular arcs or arcs of $1 / 4$ circles	$3.1 \rightarrow \text { (a) (i) - (v) plus }$ (vi) perimeter of a sector of a circle.	$\begin{aligned} & 3.1 \rightarrow \text { (a) (i) }- \text { (vi) and } \\ & \text { (vii) perimeter of a } \\ & \text { segment of a circle. } \end{aligned}$	$3.1 \rightarrow$ (a) (i) - (vii)
	(b)(i) approximation of values as listed at B.2.1(c)(i), (ii)	$\rightarrow \text { (b) (i) and }$ (ii) approximations as listed at B. 2.1(c)(iii),(iv)	\rightarrow (b) (i), (ii)	\rightarrow (b) (i), (ii)	\rightarrow (b) (i), (ii)
	(c) solution of problems involving (a), (b)	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$

[^1]

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { MAIN } \\
\text { TOPICS } \\
\text { IN STRAND } \\
\hline
\end{gathered}
\]} \& \multicolumn{2}{|r|}{DISTRIBUTION} \& CONTENT ACROSS \& \multicolumn{2}{|l|}{GRADE LEVELS} \\
\hline \& GRADE 7/FORM 1 \& GRADE 8/FORM 2 \& GRADE 9/FORM 3 \& GRADE 10/ FORM 4 \& GRADE 11/FORM 5 \\
\hline \multirow[t]{4}{*}{B. 5.0 Volume, Capacity \& Mass} \& \[
5.1
\] \& 5.1 \& \begin{tabular}{l}
5.1(a) concept of volume: \\
(i) the commonly-used unit of measure (cubic \(\mathrm{cm} / \mathrm{cm}^{3}\)) and its relation to other cubic units; \\
(ii) calculation of volume of cubes, cuboids, cylinders, prisms;
\end{tabular} \& \(5.1 \rightarrow\) (a) (i), (ii) and (iii) calculation of volume of pyramids, cones, spheres \& \(5.1 \rightarrow\) (a) (i) - (iii) \\
\hline \& \[
5.2
\] \& 5.2 \& \begin{tabular}{l}
5.2(a) concept of capacity: \\
(i) the basic unit of capacity (litre) and the relationship between measures of volume and of capacity; \\
(ii) calculation of the capacity of figures named at 5.1(ii)
\end{tabular} \& \begin{tabular}{l}
\(5.2 \rightarrow\) (a)(i), (ii) and \\
(iii) calculation of the capacity of figures named at 5.1 (a)(iii)
\end{tabular} \& \(5.2 \rightarrow\) (a) (i) - (iii) \\
\hline \& \[
5.3
\] \& 5.3 \& \begin{tabular}{l}
5.3(a) concept of mass: \\
(i) the basic unit of mass (gram) and the relationship between measures of volume and of mass; \\
(ii) calculation of the mass of figures named at 5.1 (ii); \\
(b) solution of problems involving measurements of volume, capacity and mass of the solid figures already introduced
\end{tabular} \& \begin{tabular}{l}
\(5.3 \rightarrow\) (a)(i), (ii) and \\
(iii) calculation of the mass of solids named at 5.1(a) (iii) \\
\(\rightarrow\) (b)
\end{tabular} \& \(5.3 \rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{iii})\)

$\rightarrow(\mathrm{b})$

\hline \& 5.4(a) estimation of the margin of error for a given measurement \& $5.4 \rightarrow$ (a) \& $5.4 \rightarrow$ (a) \& $5.4 \rightarrow$ (a) \& $5.4 \rightarrow$ (a)

\hline
\end{tabular}

[^2]B. MEASUREMENT

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$	GRADE 7/FORM ${ }^{\text {D }}$ D I S T R I B U T I O N		CONTENT ACRO	S GRADE LE	EVELS
			GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
	6.1 (a) basic unit (hour) and the relation to (i) parts of the hour; (ii) other measures of time: day, week, month, year, leap year, decade, century (iii) use of B.C. and A.D.	$6.1 \rightarrow \text { (a) (i) }- \text { (iii) }$	$6.1 \rightarrow \text { (a) (i) }- \text { (iii) }$	$6.1 \rightarrow$ (a) (i) - (iii)	$6.1 \rightarrow$ (a) (i) - (iii)
	(b)(i) representation of time: - on the 12 -hour clock - on the 24 -hour clock - in digital form (ii) conversion from one type of representation to another; (iii) use of a.m. and p.m.	$\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{iii})$	$\rightarrow(\mathrm{b})(\mathrm{i})-\text { (iii) }$	\rightarrow (b) (i) - (iii)	\rightarrow (b) (i) - (iii)
	(c)(i) estimation of and formal operations (A, S, M, D) with units of time; special attention to calculation of time elapsed	\rightarrow (c)(i) plus (ii) concept of speed: - estimation and /or calculation of speed and average speed	\rightarrow (c)(i) - (iii) plus (iv)further relationships among distance, time, speed; (v) concept of acceleration.	\rightarrow (c) (i) - (v)	$\rightarrow(\mathrm{c})$ (i) - (v)
	(d) problem-solving involving the passing and use of time whether the information is given verbally, in writing, or on tables or charts	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$	$\rightarrow(\mathrm{d})$

[^3]
B. MEASUREMENT

C. GEOMETRY AND TRIGONOMETRY

[^4]| MAIN TOPICS IN STRAND | DISTRIB U TIO N (| | CONTENT ACRO | S GRADE L E | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | GRADE 7/FORM 1 | GRADE 8/FORM 2 | GRADE 9/FORM 3 | GRADE 10/FORM 4 | GRADE 11/FORM 5 |
| C. 3.0 Plane
 Figures /
 Shapes :
 Polygons | 2.1(d) - use of protractor to find (cont'd) size of a given angle and for drawing an angle of x° where $0<x \leq 180$;
 (ii) classification of angles by size: right, straight, acute, obtuse | | | | |
| | 3.1 (a) The Triangle: a polygon enclosed by 3 edges/sides /straight lines:
 (i) use of letter names for the sides of the triangle and use of the symbol, Δ;
 (ii) classification of triangles by comparing the lengths of the sides: equilateral, isosceles, scalene: the special properties of each;
 (iii) use of ruler \& compasses to construct a triangle when given the lengths of its sides. (SSS) [See 4.1 (a) (i) - (iii)] | 3.1(a)(i) - (iii) and
 The Quadrilateral: study of 4-sided polygons:
 (iv) use of letter names for vertices and sides of any quadrilateral;
 (v) classification of quads. by the relationship between the sides, angles and diagonals of each type of quadrilateral parallelogram, rectangle, square, rhombus, trapezium, kite; common and distinctive properties of these quadrilaterals | 3.1(a)(i) - (v) plus
 Other Polygons enclosed by n sides, where $4<n \leq 10$;
 (vi) the special name of each as the value of n changes;
 (vii) concave and convex polygons; regular and irregular n-sided polygons; the relationship between sides and angles in each case. | 3.1(a) (i) - (vii) | 3.1(a) (i) - (vii) |
| | (b)(i) types of triangles by the sizes of their angles: right-angled acuteangled, obtuse-angled,
 (ii) measurement of the sizes of the angles in a given triangle; | \rightarrow (b) (i) - (iii) and
 (iv)finding the sum of the angles of any quad.;
 (v) using available info. to calculate the size of one or more unknown angle(s) | \rightarrow (b) (i) - (v) plus
 (vi) finding
 - the sum of the angles in an n -sided polygon; - the size of one angle of a regular polygon when given the number of sides | $\rightarrow(\mathrm{b})$ (i) - (vi) | \rightarrow (b) (i) - (vi) |

[^5]

[^6]| MAIN TOPICS | DISTRIB U T I O N O | | CONTENT ACROS | S GRADE LEVEL | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { TOPICS } \\ & \text { IN STRAND } \\ & \hline \end{aligned}$ | GRADE 7/FORM 1 | GRADE 8/FORM 2 | GRADE 9/FORM 3 | GRADE 10/FORM 4 | GRADE 11/FORM 5 |
| C. 4.0 Plane
 Figures: Circles (cont'd) | 4.1(c) | 4.1(c) the sector of a circle:
 (i) sum of the angles at the centre of a circle;
 (ii) size of angle of sector;
 (iii) relationship between size of sector angle and length of arc which subtends the angle;
 (iv) relationship between size of sector angle and
 - area of sector;
 - perimeter of sector | 4.1(c) (i) - (v) plus
 (vi) extension of work with sectors:
 - concepts: angle subtended by an arc at the centre of a circle; angle(s) in the alternate segment; drawing \& measuring such angles;
 (vii) working with the segment of a circle:: its perimeter and area | 4.1 (c) (i) - (vii) | 4.1 (c) (i) - (vii) |
| | (d)(i) application of knowledge \& skills gained at C. (4.1) (a) to other topics and Strands | (d)(ii) solving problems using properties of circles introduced at (a) - (c) | \rightarrow (d) (i) - (ii) | \rightarrow (d) (i) - (ii) | \rightarrow (d) (i) - (ii) |
| | | | 4.2 Circle Theorems
 (a) The angle which an arc of a circle subtends at the centre of a circle is twice that which it subtends at any point on the remaining part of the circumference
 (b) The angle in a semicircle is a right angle.
 (c) Angles in the same segment of a circle and subtended by the same arc are equal.
 (d) Problem solving using (a) - (c) | 4.2 (a) -(d) plus
 (e) The opposite angles of a cyclic quadrilateral are supplementary.
 (f) The exterior angle of a cyclic quad. is equal to the interior opposite angle
 (g) The line joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.
 (h) Problem solving using (e) - (g) | 4.2 (a) - (h) plus review of \& more work with tangents:
 (i) A tangent to a circle is perpendicular to the radius of that circle at the point of contact.
 (j) The lengths of two tangents from an external point to the points of contact on the circle are equal. |

[^7]

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN }{ }^{\text {STRAND }} \\ \hline \end{gathered}$	D I S T R I B U T I O N GRADE 7/FORM 1 GRADE 8/FORM 2		CONTENT ACRO	S GRADE LEVEL	GRADE 11/FORM 5
			GRADE 9/FORM 3	GRADE 10/FORM 4	
C.5.0 Solids / ThreeDimensional Figures (cont'd)	$5.2(\mathrm{c})(\mathrm{cont}$ 'd)	5.2(c) .	5.2(c) - unrelated units of measure: volume $\left(\mathrm{cm}^{3}\right)$, mass(grams) - identification of a rate: mass per unit of volume i.e. grams per cubic cm (the density of a substance)	$\rightarrow 5.2$ (c)	$\rightarrow 5.2$ (c)
			(d) (i) the total surface area of solids listed at 5.2 (a)(i)	\rightarrow (d) (i) plus (ii) total surface area of solids listed at 5.2(a)(iv)	\rightarrow (d)(i) - (ii)
			(e) problem-solving requiring application of concepts related to the properties of three-dimensional figures already introduced.	\rightarrow (e)	\rightarrow (e)
C. 6.0 Movement / Transformation	6.1	6.1(a) Transformation \leftrightarrow change. introductory ideas: (i) a 1-1 mapping whose domain \& range are the set of all points in the plane; (ii) types of movement that result in the changed position and/or shape and/ or size by sliding, flipping, turning/rotating, enlarging, or reducing; (iii)congruence \&/or similarity of the original shape $\&$ its image.	6.1(a) (i) - (iii)	6.1(a) (i) - (iii)	6.1(a) (i) - (iii)

[^8]

MAIN TOPICS	DISTRIB U T I O N O			S GRADE LEVEL	
IN STRAND	GRADE 7/FORM 1	GRADE 8/FORM 2	CONTENT ACROS GRADE 9/FORM 3	GRADE 10/FORM 4	GRADE 11/FORM 5
C. 6.0 Movement / Transformation (cont'd)	6.3	6.3	6.3 (a) Transformation by reflection. Key concepts, vocabulary, symbols: (i) a flipping movement across a line of reflection referred to as a mirror or a fold line; (ii) the mirror line, a line of symmetry; size and shape of figure preserved (congruence \& similarity); (iii) symbolically, the original figure \boldsymbol{A} has image, \boldsymbol{A}^{\prime}, while the image of \boldsymbol{A}^{\prime} is $\boldsymbol{A}^{\prime \prime}$; symbol, \boldsymbol{M}, denotes a reflection; (iv) If point \boldsymbol{B} is on the mirror line, its image is \boldsymbol{B}; if \boldsymbol{B} is not on the mirror line, then the mirror line is the perpendicular bisector of $\boldsymbol{B} \boldsymbol{B}^{\prime}$ (b) making \& interpreting line reflections: (i) locating the images of points after line reflection; (ii) locating lines of symmetry; (iii) finding the position of the mirror line when given a figure and its image; (iv) re: line reflections in the coordinate plane: - reflection over the x and y axes; - reflection over the line $y=x$	6.3 (a) (i) - (iv) \rightarrow (b) (i) - (iv) plus (v) reflecting a figure over any line of the form, $y=a x+b$ (vi) locating the image of a set of points under a combination of trans lation and reflection [a glide reflection, \boldsymbol{G}] (vii) given a figure and its image, identifying the combination of transformations(MT or $\boldsymbol{T M}$) that produced the image	$6.3 \text { (a) (i) - (iv) }$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{vii})$

MAIN TOPICS	DISTRIBUTION		CONTENT ACROSS	S GRADE LEVEL	
IN STRAND	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/FORM 4	GRADE 11/FORM 5
$\begin{array}{\|l} \text { C. } 7.0 \\ \text { Trigonometry } \\ \text { (cont'd) } \end{array}$	7.1	7.1	7.1(a) (cont'd) (iii) problem-solving which requires - choosing the appropriate trigonometric ratio that links known to unknown to find a missing side or angle in a right-angled triangle or to solve a right-angled Δ; - efficient use of the scientific calculator; - making sketches and diagrams / scale drawings to represent information given in words; - rounding calculated values of angles to the nearest degree and of lengths to the required or appropriate number of decimal places or significant figures (b)(i)use of trig. ratios to find heights and distances in simple three-dimensional situations: - concepts: angle of elevation, angle of depression	$\rightarrow 7.1$ (a) \rightarrow (b)(i) plus (ii) use of trig. ratios to solve problems involving bearings - the relative position of two points given the bearing of one with respect to the other; - the bearing of one point relative to another given the position of both points	$\rightarrow 7.1(\mathrm{a})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \end{gathered}$	DISTRIBUTION		CONTENT A	GRADE LEV	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
D. 1.0. Symbolic Representation and Arithmetic Type Operations	1.1(a)The accustomed use of symbols to represent numbers, operations, relationships: (i) use of digits such as $5,18,139$ and the value of each digit in the placevalue system; (ii) use of operational symbols, $+,-, \mathrm{x}, \div$, and related vocabulary such as: add, sum, total, subtract, difference, product, quotient (iii) translation from words to symbolic language: Add three to five times four shown as $(5 \times 4)+3$ (b)The widespread use of letters to represent numbers and/or quantities \leftrightarrow the study of Algebra; additional concepts and extended vocabulary: (i) variable, term, coefficient, expression, like terms, constant, factors of a term; (ii) translation of verbal phrases or expressions to algebraic terms and / or expressions and vice versa: e.g. From c take the sum of a and b is shown as, $c-(a+b)$.	$1.1 \rightarrow(\mathrm{a}) \text { (i) }-(\mathrm{iii})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$	$1.1 \rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{iii})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$	$1.1 \rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{iii})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$	$1.1 \rightarrow(\mathrm{a}) \text { (i) }- \text { (iii) }$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$

[^9]| MAINTOPICSIN STRAND | D I S T R I B U T I O N O | | CONTENT ACRO | S GRADE LEVE | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | GRADE 7/FORM 1 | GRADE 8/FORM 2 | GRADE 9/FORM 3 | GRADE 10/ FORM 4 | GRADE 11/FORM 5 |
| D. 1.0.
 Symbolic
 Representation and
 Arithmetic Type
 Operations (cont'd) | 1.2(a) Application of the 'Laws of Arithmetic' when operating with algebraic terms and expressions:
 (i) to write expressions in their simplest forms using the four basic operations, A, S, M, D, and including the use of exponents;
 (ii) to simplify fractions of the forms, $\frac{x}{3}+\frac{x}{5}-\frac{x}{10}, \quad \frac{x y}{5} \times \frac{10}{x}$
 (iii) to apply the commutative, associative and distributive properties of numbers;
 (iv) to perform the basic operations with integers;
 (v) to combine operations, observing the conventional order of operations.
 (b)Evaluation of algebraic terms and expressions (numerical values for symbols) with special attention to:
 (i) the operations as used at 1.2(a) above;
 (ii) terms written in index form with positive indices and with the index zero | $1.2 \rightarrow$ (a) (i) - (v) plus:
 (vi) to form and simplify expressions with some or all terms in index form, including negative indices
 (vii) to simplify fractions such as $\frac{3}{5}+\frac{2}{x}, \quad 7+\frac{y-3}{y+4}$
 \rightarrow (b) (i) - (ii) plus:
 (iii) evaluation of algebraic terms and expressions with integral indices | \rightarrow (a) (i) - (vii) plus
 (viii) to simplify expressions which require the use of binary operations besides A,S,M,D
 \rightarrow (b) (i) -(iii) \& evaluation of (iv) terms written in index form with fractional indices
 (v) terms which are written with powers of powers eg the value of $\left(y^{4}\right)^{2}$ when $y=2$; | $\rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{viii})$
 $\rightarrow(\mathrm{b})$ (i) - (v) (observing all the Laws of Indices) | $\rightarrow(\mathrm{a})(\mathrm{i})-(\mathrm{viii})$ $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{v})$ |

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \\ \hline \end{gathered}$	DISTRIBUTION		CONTENT ACROS	S GRADE LEVEL	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/FORM 4	GRADE 11/FORM 5
D. 1.0. Symbolic Representation and Arithmetic Type Operations (cont'd)	1.2(c) Problem-solving involving the formation, evaluation and simplification of algebraic expressions using concepts, skills, procedures already introduced	\rightarrow (c)	\rightarrow (c)	$\rightarrow(\mathrm{c})$	$\rightarrow(\mathrm{c})$
	1.3 Sequences and patterns: (a) (i) identification, continuation, creation of sequences and patterns - (numeric, algebraic, geometric): - from pattern to general rule to algebraic exp.;	$1.3 \rightarrow$ (a)(i) plus (ii) finding the n th. term of a sequence (iii) use of sequences and patterns to solve a variety of problems across strands	$1.3 \rightarrow$ (a) (i) - (iii)	\rightarrow (a) (i) - (iii)	\rightarrow (a) (i) - (iii)
	1.4(a) Factorisation or expansion of algebraic expressions to include: (i) factorisation of expressions of the forms $a x \pm b x, \quad a x \pm b x \pm c x$, $x(a+b)+y(a+b)$, $a x \pm b x \pm a y \pm b y$ and expansion of expressions of the forms: $x(a \pm b),(a+b)(x+y)$, [See HCF at A.2.3 (b) (iv)]	$1.4 \rightarrow$ (a) (i) plus (ii) factorisation of expressions such as $15-x y+5 y-3 x$, [rearrangement of terms needed]	$1.4 \rightarrow$ (a) (i) - (ii) plus (iii) factorisation of expressions such as $\begin{aligned} & a x^{2}+b x+c \\ & a x^{2}+2 a b+b^{2} \end{aligned}$ $a^{2}-b^{2}$, where a, b, c are integers and $a \neq 0$, and expansion of expressions such as $(x \pm 2)^{2}$, $(x-3)(x+4)$ (iv) use of factorisation to simplify expressions such as $\frac{3 p+3 q}{7 p+7 q}$	$1.4 \rightarrow$ (a) (i) - (iv) plus (v) factorization of expressions such as $\frac{2 x+10}{x^{2}-25}, \frac{x^{2}-6 x+8}{x^{2}-x-2}$ (vi) use of factorisation \& completion of squares to write expressions of the form, $a x^{2}+b x+c$ in the form, $a(x+b)^{2}+c$, where a, b, and $c \in R$	$1.4 \rightarrow$ (a) (i) - (vi)
	(b) Problem-solving requiring the use of procedures at (a)	\rightarrow (b)	\rightarrow (b)	\rightarrow (b)	\rightarrow (b)

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \\ \hline \end{gathered}$	DISTRIBUTIONO		CONTENT ACRO		S GRADE LEVELS
IN STRAND	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/FORM 4	GRADE 11/FORM 5
D. 2.0 	2.2(a)	2.2(a) Use of two variables to write two equations to represent information given verbally;	$2.2 \rightarrow$ (a)	$2.2 \rightarrow(a)$	$2.2 \rightarrow$ (a)
Solution (cont'd)	(b)	(b)(i)Solution of simultaneous linear equations in two variables (algebraically) by elimination	\rightarrow (b)(i) plus (ii) solution of linear equations in 2 variables by substitution	$\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$	\rightarrow (b)(i) - (ii) plus (iii) solution of a pair of equations in two variables where one equation is linear \& the other quadratic non-linear
	(c)	(c)(i)Word problems involving the formation \& solution of two linear equations, each with two variables	$\rightarrow(\mathrm{c})(\mathrm{i})$	$\rightarrow(\mathrm{c})(\mathrm{i})$	\rightarrow (c)(i) plus word problems involving: (ii) the formation and solution of equations described above at 2.2(b)(iii)
	2.3(a)	2.3(a) Identification and use of simple formulae/ equations which state the relation between two or more variables: (i) development of formulae to represent observed relationships (ii) the value of a variable in a given formula, using the numerical information about the other variable(s)	\rightarrow (a) (i) - (ii)	\rightarrow (a) (i) - (ii) plus more work with formulae (iii) solving for a selected variable in a formula or changing the subject of a formula, including terms with square roots and exponents	\rightarrow (a) (i) - (iii)

[^10]

[^11]| $\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN }{ }^{\text {STRAND }} \\ \hline \end{gathered}$ | DISTRIBUTIO C O | | CONTENT A | GRADE LEV | EVELS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | GRADE 7/FORM 1 | GRADE 8/FORM 2 | GRADE 9/FORM 3 | GRADE 10/ FORM 4 | GRADE 11/FORM 5 |
| D. 3.0
 Inequalities: Identification, Formation \& Solution (cont'd) | 3.1(b)
 (c) | 3.1(b) solution of an inequality with one variable noting that:
 (i) the techniques used for solving equations are applicable;
 (ii) the solution set has a number of elements
 (c) problem-solving involving
 (i) changing from words to an inequality and solving the inequality algebraically
 (ii) representing the solution on a number line | $\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{ii})$ $\rightarrow(\mathrm{c})(\mathrm{i})-(\mathrm{ii})$ | $\rightarrow(\mathrm{b}) \text { (i) }- \text { (ii) }$ $\rightarrow(\mathrm{c}) \text { (i) }- \text { (ii) }$ | $\rightarrow(\mathrm{b}) \text { (i) - (ii) }$ $\rightarrow(\mathrm{c}) \text { (i) }- \text { (ii) }$ |

[^12]E. RELATIONS, FUNCTIONS AND GRAPHS

MAIN TOPICS	DIS TRIB U TII O N O		F CONTENT ACROSS		GRADE LEVELS	
IN STRAND	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3		GRADE 10/ FORM 4	GRADE 11/FORM 5
E.2.0 Graphs of Linear Functions/ Equations (cont'd)	2.1(a)cont'd	\rightarrow (a)(iv) drawing graphs to show linear functions of the form, $y=\mathrm{ax}+\mathrm{b}$, where a and b are integers;	[See p.41]	[See	$\mathrm{p} .41$	[See p.41]
	2.1(b) Solving problems which involve: (i) the use of the number line for their solution	\rightarrow (b) (i) plus solving problems which require (ii) representing a linear function (as described by a set of ordered pairs or a table of values) on a Cartesian plane and reading / interpreting the graph	\rightarrow (b) (i)-(ii) plus solving problems which require: (iii) information gained at 2.1(a) (i) -(viii) above		b)(i) - (iii) plus solving problems which require (iv) information gained at 2.1(a)(ix) above	\rightarrow (b) (i) - (ix)
	2.3 (a)	2.3(a) Further work with linear functions: (i) reviewing formation of equations from informa tion given [See D.2.1(a) and D.2.2(a)] (ii) representing 2 linear functions on the same coordinate plane and determining their point of intersection [A graphical solution of simultaneous linear equations (two variables)]	\rightarrow (a) (i) - (ii) plus use of graphs of straight lines to: (iii) to convert one unit of measure to another, including conversion of currency		(a)(i)-(iii) plus use of (iv) distance-time and speed-time graphs to determine: - distance; - time; - speed; - acceleration	\rightarrow (a) (i) -(iv) plus special relationship between (v) the gradient of a line and the tangent ratio

[^13]E. RELATIONS, FUNCTIONS AND GRAPHS

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN STRAND } \\ \hline \end{gathered}$	D I S TRIB U TIO N O		CONTENT ACROS	S GRADE LEV	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
F.1.0 Statistics (Introductory Ideas)	1.1 General examination of the widespread use of data or numerical / quantitative information: * by whom, from what sources, for what purpose(s); * distinguishing between facts and opinions	$\rightarrow 1.1$	$\rightarrow 1.1$	$\rightarrow 1.1$	$\rightarrow 1.1$
F.2.0 Data Collection, Organisation And Interpretation	2.1(a) Identification of important or interesting phenomena (i) in the immediate environ ment that could/should be investigated	\rightarrow (a) (i) plus important issues to be investigated (ii) at the community level; the need for and use of market research	\rightarrow (a) (i)-(ii) plus gathering date (iii) at the national level: issues of national and international significance	\rightarrow (a) (i) - (iii)	\rightarrow (a)(i) - (iii)
	(b) Collection of discrete ('countable') data ; (i) concepts: raw data, relevant data, population, sample population, random sampling, convenience sampling (ii) sources of data including existing records/information, and methods of collection including observation and interviews; (iii) preparation and use of tally sheets and check lists to record raw data.	\rightarrow (b)(i)-(iii) plus (iv) concepts: reliable data, representative and / or systematic sampling; (v) preparation and use of short questionnaires;	$\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{v})$ plus collection of data from a very large population: (vi) concept; continuous data; (vii) use of polls and largescale surveys; censustaking	\rightarrow (b) (i) - (vii)	\rightarrow (b) (i) - (vii)

MAIN TOPICS IN STRAND	DISTRIBUTION OF		CONTENT ACROSS	S GRADE LEVELS	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	GRADE 11/FORM 5
	2.1(c) Arrangement/organisation of raw data: (i) use of a simple frequency distribution table to show a collection of single facts (data usually arranged in ascending order)	$\rightarrow(\mathrm{c})(\mathrm{i})$	\rightarrow (c)(i) plus (ii) use of a frequency table for grouped data, with special attention to: * size \& number of groups * class intervals, class boundaries and limits (iii) attention to storage and retrieval of data (e.g. a computerised data bas	\rightarrow (c)(i)- (iii) plus (iv) use of a cumulative frequency table for ungrouped or grouped data	$\rightarrow(\mathrm{c})(\mathrm{i})-(\mathrm{iv})$
	2.1(d) Analysis \& interpretation of the available (arranged) data: (i) comparing data e.g. the greatest/least of the set as shown by the frequency; (ii) identifying a pattern or trend which might lead to a possible conclusion (iii) computing the arithmetic mean (commonly used average/ measure of central tendency) (iv) using the average / mean) to describe a set of data (v) solving problems involving knowledge and skills at 2.1(d) (i)-(iv) above.	\rightarrow (d)(i)-(v) plus (vi) use of other measures of central tendency, the median and the mode and determining which of the three best describes what is typical of the set of data; (vii) identifying misleading statistics (viii) determining from the available data the proportion or percent age of the items above/ below a given value (ix) solving problems which require application of concepts and skills at 2.1(d) (vi) - (viii)	\rightarrow (d) (i)- (ix) plus (x) analysis and description of grouped data: * finding the midpoint of each class interval * finding the mean, median and mode of grouped data	\rightarrow (d) (i)-(x) plus (xi) determining the spread/measures of dispersion of grouped and ungrouped data: * the range * the interquartile range * the semi-interquartile range	(d) (i) - (xi)

$\begin{gathered} \text { MAIN } \\ \text { TOPICS } \\ \text { IN }{ }^{\text {STRAND }} \end{gathered}$	DISTRIBUTIONO		CONTENT ACROS	S GRADE LEVEL	GRADE 11/FORM 5
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/ FORM 4	
F.3.0 Graphical Presentation and Interpretation of Data	3.1(a)	3.1(a) Construction of statistical diagrams to aid understanding and use of the available data:: (i) the bar graph, (vertical and horizontal) with special attention to * the use of the vertical and horizontal axes; * the scale or key used; * the title of the graph (ii) the pie chart	$3.1 \rightarrow$ (a) (i)-(ii) plus construction of (iii) line graphs, one or more lines as needed (iv) histograms to show ungrouped and/or grouped data (equal classes) (v) frequency polygons (grouped data in equal class intervals)	$3.1 \rightarrow$ (a) (i) - (v) plus (vi) the cumulative frequency curve or ogive to illustrate a cumulative frequency distribution [Special attention to scale on each axis and to the use of the class boundaries as the domain]	$3.1 \rightarrow$ (a)(i)-(vi)
	3.2(b)	\rightarrow (b)(i) Determining which of the two (bar or pie chart) is more appropriate for displaying a set of data \&/or for making infer ences \& predictions	\rightarrow (b)(i) plus (ii)use of the line graph to represent data \& detecting when line graphs misrepresent given data (iii) choice of graphs to display data \&/or to make inferences, decisions \& predictions	\rightarrow (b)(i) - (iii) plus (iv) use of the cumulative frequency curve to - estimate the median from a set of grouped data; - estimate the quartiles	\rightarrow (b)(i)-(iv)
F.4.0 Probability	4.1(a) Probability: considering the element of uncertainty in everyday experiences; (i) classification of events as certain, impossible, as likely to happen as not;, having a good/poor chance of happening / having a high or low probability of happening;	$\rightarrow 4.1$ (a)	$\rightarrow(\mathrm{a})$	$\rightarrow(\mathrm{a})$	$4.1 \rightarrow(a)$

[^14]| MAINTOPICSIN STRAND | D I S TRIB U TION OF | | CONTENT ACROSS | GRADE LEVELS | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | GRADE 7/FORM 1 | GRADE 8/FORM 2 | GRADE 9/FORM 3 | GRADE 10/ FORM 4 | GRADE 11/FORM 5 |
| F.4.0 Probability (cont'd) | 4.1(b) Experimental probability or use of experiments to help determine the probability of an event:
 (i) use of terms: experiment, sample space, event, outcome, possible outcome, successful or favourable outcome,
 (ii) observation and recording of the results of activities to determine the likelihood of one particular outcome occurring;
 (iii) expressing the experimental probability of an outcome (E) in the form, $\mathrm{P}(\mathrm{E})=$ number of observations favourable to E total number of observations
 (iv) expressing the fraction derived at (iii) in decimal or percentage form | \rightarrow (b) (i)- (iv) plus ideas related to the theoretical probabilities of events :
 (v) use of set notation to describe a probability: $\mathrm{p}(\mathrm{R})=\frac{\mathrm{n}(\mathrm{R})}{\mathrm{n}(\mathrm{U})}$
 where $R=\{$ required outcomes $\}$ and $\mathrm{U}=$ \{all possible outcomes\}
 (vi) use of formula at (v) to calculate probabilities in 'word' problems | \rightarrow (b) (i) - (vi) | \rightarrow (b) (i) - (vi) | \rightarrow (b) (i) - (vi) |

MAINTOPICSINSTRAND	D I S TRIBUTION O		CONTENT ACROSS	GRADE LEVELS	
	GRADE 7/FORM 1	GRADE 8/FORM 2	GRADE 9/FORM 3	GRADE 10/FORM 4	GRADE 11/FORM 5
G.1.0 The Consumer: Spending for Goods \& Services	1.1(a) Use of money for items such as food, clothing, utilities, health care, entertainment: (i) pricing systems: formats for quoting prices such as $\$ 100$ per doz., 5 for $\$ 89$; (ii) preparation and use of bills, invoices, receipts	$1.1 \rightarrow$ (a)(i) - (ii) plus (iii) use ATM machines; (iv) payment by cheque, debit and/or credit card	\rightarrow (a)(i)-(iv) plus (v) shopping from a catalogue or via the internet; (vi) conversion from one currency to another, given the exchange rate; [See E.2.3(a)(iii)]	\rightarrow (a) (i) - (vi)	\rightarrow (a) (i) - (vi)
	(b) Application of number properties and operations to compute and compare: (i) unit cost, total cost, estimated or approximate cost; bulk/wholesale vs single-item purchasing; (ii) GCT \&/or other tax (iii) change due from cash tendered for goods	\rightarrow (b) (i) - (iii) plus (iv) noting payments and balances on cheque stubs	\rightarrow (b) (i) - (iv) plus (v) calculation of amount to be paid on charge account (minimum payment and/or interest on outstanding balance	\rightarrow (b) (i) - (v)	$\rightarrow(\mathrm{b})(\mathrm{i})-(\mathrm{v})$
	(c) Critical examination of sales, specials, bargains: (i) influence of brand name; (ii) determination of 'better buys'; (iii) actual amount and percent of original price saved; actual discount and discount\%; [See A.3.2(a) (i)-(iv)	\rightarrow (c) (i) - (iii) plus Trading...buying and selling transactions: (iv)computation of: - selling price when cost and actual profit or loss or percentage profit or loss are known; - cost price when selling price and actual profit or loss or percentage profit or loss are known;	\rightarrow (c) (i) - (iv) plus (v) Purchase of goods by hire-purchase agreement: - stated cost, - down payment, - instalments, - final cost	\rightarrow (c) (i)-(v) plus (vi) Purchase of major assets such as houses: - loan financing, - mortgage payment, - interest on loan; - home owner's insurance policy	\rightarrow (c) (i) - (vi)

NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^15]
[^0]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^1]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^2]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^3]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^4]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^5]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^6]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^7]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^8]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^9]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^10]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^11]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^12]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^13]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^14]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content, Revised 2010

[^15]: NCB Mathematics Project 2004-2007, Scope \& Sequence of Content , Revised 2010

